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Why Bayesian Meta-Learning?
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o Deterministic methods learn a point estimate
(e.g. one classifier).

e Bayesian methods show multiple hypotheses.
Useful for:

® safety-critical settings
® gctive learning
® cxploration



What We'll Cover Today

1. Amortized Variational Inference

2. ELBO Derivation for Black-Box Meta-Learning

Out of scope: iImplemenation, MAML-based methods



How to Read Plate Notation

—>@< 6 e \Ve see N datapoints generated through the
< same Process

| ® [he parameters outside the plate are shared

S / ® X IS observed, z is unobserved




How to Read Plate Notation
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\ 4 ® X |S observed, z Is unobserved
e We sample x as py(2)py(x z)  —often just p(z)
N o Given x, we infer z as g,(z x)




Evidence Lower Bound (ELBO)

0

/ log p(x) >

= o |108P(x, 2)| + #(q(z| X))

—q(z]x) [logp(x | Z)] — Dy (Q(Z|x)||P(Z))




What We'll Cover Today

1. Amortized Variational Inference

2. ELBO Derivation for Black-Box Meta-Learning

Out of scope: iImplemenation, MAML-based methods



A Black-box Bayesian Model

J

e [wo plates: | tasks, N datapoints per task

e Global parameters @ model task parameters ¢
e () = model parameters, model inputs...

e Shorthand: X = (X, ..., xn), Y = (Vy5 ---5 V)

e For task i, labels predicted as p(y x, ¢;).

Jo make predictions on a new task:
(1) infer g(¢p X, Y) (2) predict p(y x"", ¢)



Evidence Lower Bound (ELBO)
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Parameterization

Bayesian black-box meta-learning
with standard, deep variational inference

JAN v* ® () = network weights
t r ,—
P e(o1) 4 | ® "Hypernetwork”

e | earned prior p(¢p 0)is

max Eg ’[Eq( 4191%,0) [log p (y,-ts | %5, ¢,-)] — Dy (q (4),- |27, 9) lp(¢;] 9))‘

’ important
Pros: ® () = inputs to a network
+ can represent non-Gaussian distributions over ytS
+ produces distribution over functions ® Meaning Of ¢ IS entire‘y learned
Cons:
- Can only represent Gaussian distributions p(¢; | 0) ® S|mp\e prior p(¢) suffices

(okay when ¢, is latent vector)
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What We Covered Today

1. Amortized Variational Inference
2. ELBO Derivation for Black-Box Meta-Learning

Out of scope: iImplemenation, MAML-based methods
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