CS330 Review Session: Bayesian Meta-Learning

Why Bayesian Meta-Learning?

Smiling,
Wearing Hat,
Young

Smiling,
 Wearing Hat,
 Young

- Deterministic methods learn a point estimate (e.g. one classifier).
- Bayesian methods show multiple hypotheses.
 Useful for:
 - safety-critical settings
 - active learning
 - exploration

What We'll Cover Today

1. Amortized Variational Inference 2. ELBO Derivation for Black-Box Meta-Learning

Out of scope: implemenation, MAML-based methods

How to Read Plate Notation

- We see N datapoints generated through the same process
- The parameters outside the plate are shared
- x is observed, z is unobserved

How to Read Plate Notation

- We see N datapoints generated through the same process
- The parameters outside the plate are shared
- x is observed, z is unobserved
- We sample x as $p_{\theta}(z)p_{\theta}(x \ z)$ —often just p(z)
- Given x, we infer z as $q_{\phi}(z x)$

Evidence Lower Bound (ELBO)

 $\log p(x) \ge \mathbb{E}_{q(z|x)} \left[\log p(x,z) \right] + \mathcal{H}(q(z|x))$ $= \mathbb{E}_{q(z|x)} \left[\log p(x|z) \right] - D_{KL} \left(q(z|x) || p(z) \right)$

What We'll Cover Today

1. Amortized Variational Inference 2. ELBO Derivation for Black-Box Meta-Learning

Out of scope: implemenation, MAML-based methods

A Black-box Bayesian Model

- Two plates: T tasks, N datapoints per task • Global parameters heta model task parameters ϕ • ϕ = model parameters, model inputs... • Shorthand: $X = (x_1, ..., x_N), Y = (y_1, ..., y_N)$
- For task i, labels predicted as $p(y \ x, \phi_i)$.
- To make predictions on a new task:
- (1) infer $q(\phi X, Y)$ (2) predict $p(y x^{new}, \phi)$

Evidence Lower Bound (ELBO)

(whiteboard)

Parameterization

Bayesian black-box meta-learning

with standard, deep variational inference

$$\max_{\theta} \mathbb{E}_{\mathcal{T}_{i}} \left[\mathbb{E}_{q\left(\phi_{i} \mid \mathcal{D}_{i}^{\mathrm{tr}}, \theta\right)} \left[\log p\left(y_{i}^{\mathrm{ts}} \mid x_{i}^{\mathrm{ts}}, \phi_{i}\right) \right] - D_{KL} \left(q\left(\phi_{i} \mid \mathcal{D}_{i}^{\mathrm{tr}}, \theta\right) || p(\phi_{i} \mid \theta) \right) \right]$$

Pros:

+ can represent non-Gaussian distributions over y^{ts}

+ produces distribution over functions

Cons:

- Can only represent Gaussian distributions $p(\phi_i | \theta)$ (okay when ϕ_i is latent vector)

- ϕ = network weights
 - "Hypernetwork"
 - Learned prior $p(\phi \ \theta)$ is important
- ϕ = inputs to a network
 - Meaning of ϕ is entirely learned
 - Simple prior $p(\phi)$ suffices

What We Covered Today

1. Amortized Variational Inference 2. ELBO Derivation for Black-Box Meta-Learning

Out of scope: implemenation, MAML-based methods

